Workshop on Challenges and Innovations in Nanotechnology 18-19 December, Damascus- Syria

Nanotechnology at HIAST

Yomen Atassi, Professor Director of research at HIAST

Introduction

- 1. Master in Materials Sciences & Engineering in 2008
 - 1. Polymer and composite materials,
 - 2. Ceramics and glasses,
 - 3. Metallurgy
- 2. Doctoral program in Materials Sciences & Engineering in 2013
- 3. Materials Science Engineering program in 2013

Nanoscience research according to their potential applications:

- 1. Environment
- 2. Agriculture
- 3. Pharmacy
- 4. Medicine
- 5. Technical Applications

Environmental Applications

- 1. Membrane for water filtration (Poster Session)
- 2. CQDs for detecting heavy metal ions in water (Poster Session)
- 3. Nanoferrites against EM pollution. (Poster Session, 2 posters)

1. Membranes for Water Filtration

SEM and TEM micrographs of pTSA-PANI/PLLA nanofiber membranes

Environmental Science and Pollution Research, 2019, DOI 10.1007/s11356-019-06654-1

1. Membranes for Water Filtration

pTSA-PANI/PLLA nanofiber membranes for methyl orange adsorption

PLLA and •pTSA-PANI/PLLA mats
Environmental Science and Pollution Research, 2019, DOI 10.1007/s11356-019-06654-1
Workshop on Challenges and Innovations in Nanotechnology

1. Membranes for Water Filtration

Environmental Science and Pollution Research, 2019, DOI 10.1007/s11356-019-06654-1 Workshop on Challenges and Innovations in Nanotechnology

2. CQDs for detecting heavy metal ions in water

2. Detection of heavy metal ions in water using CQDs

Detection of Hg(II) ions in water is based on the quenching of CQDs fluorescence: Limit of detection 7.63 nM Linear range 0 - 4.2 µM

Accepted Heliyon, 2019

3. Nanoferrites against EM pollution

Sol-gel nanoferrite 118-135nm

Materials Chemistry and Physics 211 (2018) 79e87

Conventional ferrite 180-205 µm Environment

3. Nanoferrites against EM pollution

Environment

3. Nanoferrites against EM pollution

INTERFACIAL POLARIZATION CORE-SHELL STRUCTURES

Agricultural Applications

Clay based hydrogel nanocomposites (soil remediation)

Advantages:

- Cost-effective hydrogel
- Better mechanical properties

Clay based hydrogel nanocomposites (soil remediation)

J Polym Environ (2018) 26:3937-3948

Polymer Science, Ser. B, 2015, Vol. 57, No. 6, pp. 750–758

Clay based hydrogel nanocomposites (soil remediation)

Pharmaceutical/Medical Applications

- 1. Nanosilver in hydrogels as bactericide
- 2. Scaffolds for tissue engineering (Poster Session)
- 3. Nanocomposite organogels/ Scaffolds/ PU foams for Hemostasis Applications (Poster Session, 2 Posters)
- 4. Drug delivery systems (Nanocubes, cubosomes, hexosomes)
- 5. CQDs for drug release monitoring (pharmacokinetics in vitro)

1.Nanosilver in hydrogels as bactericide

1.Nanosilver in hydrogels as bactericide

2. Scaffolds for Neural Tissue Engineering

Collaboration with MPIP-Mainz-Germany 2016

2. Scaffolds for Neural Tissue Engineering

Mat diameter: 18 cm, mat thickness: 90 µm

Mats from Spinnable solution of PANI:pTSA/PLLA (a) Whole mat (b) Zoom in photo Workshop on Challenges and Innovations in Nanotechnology 20

3. Nancomposites for Hemostasis

3. Organogel for Hemostasis

medicine

3. PU-foam for Hemostasis

3. Organogels for Hemostasis

3. Scaffolds for Hemostasis

Mat diameter: 18 cm, mat thickness: 90 µm

300 nm

SM: RESOLUTION

Mats from Spinnable solution of PLLA (a) Whole mat (b) SEM image

Scan speed: 7

J. Appl. Polym Sci. 133 (2016) 43687

medicine

3. Organogels for Hemostasis

O-Gel(K+CS)

O-Gel (CS)

O-Gel(K)

GELITA-SPON®

Gauze

BLOOD

medicine

3. Organogels for Hemostasis

TEM images of bio-sourced copolymers-1-

CERMAV-Gernoble-France 2018

4. Drug delivery systems: Cubosomes, hexosomes

TEM images of bio-sourced copolymers-2-

CERMAV-Gernoble-France 2018

4. Drug delivery systems: Cubosomes, hexosomes TEM images of bio-sourced copolymers-3-

CERMAV-Gernoble-France 2018

Nano-encapsulation: Monodisperse spheres

CERMAV-Grenoble-France 2018

Workshop on Challenges and Innovations in Nanotechnology

4. Drug delivery systems: Nanocubes

CERMAV-Grenoble-France 2018

Technical Applications

Gain medium for high energy lasers Conductive latex (talk, session 5)

1. Gain medium for high energy lasers

nanoceramics of Cr,Nd:GGG

1. Gain medium for high energy lasers

Advantages of polycrystalline ceramics over single crystals:

- Simple preparation process,
- Cost-effective,
- Higher doping concentrations without segregation

1. Gain medium for high energy lasers

Journal ofLuminescence 165(2015)1–5 Photoluminescence spectrum of nanopowder (continue line) and for monocrystal (dashed line)

2. Conductive latex

2. Conductive latex

Potential Applications of the colloids

Conductive Ink

Conductive fabrics

Outcomes of our experience 2008-2019

Outcomes of our experience 2008-2019 -continued

- International Collaboration:
 - ► MPIP, Mainz, Germany 2016
 - University of Tehran, Iran 2016
 - Imam Hossein University, Iran 2016
 - **ENS-Paris Saclay, France 2017**
 - Nanosciences Foundation, France 2018
 - Iran Nanotechnology Innovation Council, 2019
- National Collaboration:
 - Faculty of Science, University of Damascus, 2016
 - **Faculty of Medicine, University of Damascus, 2019**
 - General Commission for Scientific Agricultural Research (GCSAR), 2019

Challenges

- Poor high-tech infrastructure.
- Insufficient communication between local academic institutions.
- Difficulty in outsourcing measurements and purchasing chemicals due to embargo on Syria.
- ► A low budget for R&D.
- Research outcomes are either articles or academic degrees.

How to step forward?

- Learning how to up-scale the nanotechnology research products.
- Transforming universities and academic institutions into Technology Parks: incubators for startups and spin-off enterprises.
- Enhancing networking between academic institutions in Syria.
- Collaborating with the international academia in nanotechnology.
- Collaborating fruitfully with Iran Nanotechnology Innovation Council (INIC).
- Reforming the educational system:
 - **Building teamwork mentality**
 - Appreciating science and scientists
 - Including nanotechnology in school curriculum.

